Journal of Organometallic Chemistry, 386 (1990) 349-363 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20593

Synthese und Reaktivität von Phenylethinyl-substituierten Phosphenium-Ion-Komplexen $(R)(R')P=MoCp'(CO)_2$; Darstellung von Clusterverbindungen, die einen 1-Cobalta-2-Phospha-Heteroallyl Synthesebaustein enthalten *

Heinrich Lang *, Michael Leise und Laszlo Zsolnai

Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-6900 Heidelberg I (B.R.D.)

(Eingegangen den 3. November 1989)

Abstract

The synthesis of the phenylethinyl-chlorophosphines (R)(Cl)P(C=C-Ph) (R = 2,6-^tBu₂-4-MeC₆H₂O: IVa; R = 2,4,6-^tBu₃C₆H₂O: IVb) is described. IV reacts with Cp'(CO)₃Mo⁻, VII, (Cp' = η^{5} -C₅H₅, η^{5} -C₅Me₅) to yield bifunctionalized terminal phosphenium-ion complexes of the type (R)(Ph-C=C)P=MoCp'(CO)₂ (R = 2,6-^tBu₂-4-MeC₆H₂O, Cp' = η^{5} -C₅H₅: IIa; R = 2,4,6-^tBu₃C₆H₂O, η^{5} -C₅H₅: IIc, Cp' = η^{5} -C₅Me₅: IId). The compounds II contain a trigonal planar coordinated phosphorus atom, which is part of a phosphorus-molybdenum double bond system.

The reaction of II with dicobaltoctacarbonyl, V, gives the complexes {[$(\eta^2-C=C-Ph)Co_2(CO)_6$](R)P}=Mo($\eta^5-C_5H_5$)(CO)₂ (R = 2,6^{-t}Bu₂-4-MeC₆H₂O: VIIIa; R = 2,4,6^{-t}Bu₃C₆H₂O: VIIIb) and the cluster compounds (CO)₃Co-(R)P[$(\eta^2-C=C-Ph)Mo(\eta^5-C_5Me_5)(CO)_2$ -Co(CO)₂] (R = 2,6^{-t}Bu₂-4-MeC₆H₂O: IXa; R = 2,4,6^{-t}Bu₃C₆H₂O: IXb), in which the phenylethinyl ligand, in contrast to II, is π -side-on coordinated to a Co₂(CO)₆ (VIIIa, VIIIb) or to a (CO)₂Co-Mo(η^5 -C₅Me₅)(CO)₂ (IXa, IXb) fragment. The complexes IX contain a 1-cobalta-2-phospha heteroallyl building block.

All new compounds are documented by analytical and spectroscopic (IR, MS, ¹H-, ¹³C-, ³¹P-NMR) data as well as by an X-ray diffraction study of IXb.

Zusammenfassung

Die Synthese der Phenylethinylchlorphosphane (R)(Cl)P(C=C-Ph) (R = 2,6-^tBu₂-4-MeC₆H₂O: IVa; R = 2,4,6-^tBu₃C₆H₂O: IVb) wird beschrieben. Durch Umsetzung von IV mit Cp'(CO)₃Mo⁻, VII, (Cp' = η^{5} -C₅H₅, η^{5} -C₅Me₅) gelingt der

^{*} Frau Prof. Dr. Dr. H.C. Becke-Goehring zum 75. Geburtstag gewidmet.

Aufbau von bifunktionalisierten terminalen Phosphenium-Ion-Komplexen der Art (R)(Ph-C=C)P=MoCp'(CO)₂ (R = 2,6-^tBu₂-4-MeC₆H₂O, Cp' = η^5 -C₅H₅: IIa; R = 2,4,6-^tBu₃C₆H₂O, Cp' = η^5 -C₅H₅: IIc, Cp' = η^5 -C₅Me₅: IId). Die Verbindungen II enthalten ein trigonal-planar koordiniertes Phosphoratom, das Bestandteil eines Phosphor-Molybdän-Doppelbindungssystems ist.

Die Verbindungen II ergeben durch Reaktion mit Dicobaltoctacarbonyl, V, die Komplexe {[$(\eta^2-C\equiv C-Ph)Co_2(CO)_6$](R)P}=Mo($\eta^5-C_5H_5$)(CO)₂ (R = 2,6-^tBu₂-4-MeC_6H_2O: VIIIa; R = 2,4,6-^tBu₃C_6H_2O: VIIIb) und die Cluster-Verbindungen (CO)₃Co-(R)P[$(\eta^2-C\equiv C-Ph)Mo(\eta^5-C_5Me_5)(CO)_2$ -Co(CO)₂] (R = 2,6-^tBu₂-4-MeC_6H_2O: IXa; R = 2,4,6-^tBu₃C_6H_2O: IXb), in denen der Phenylethinyl-Ligand, im Vergleich zu II, π -side-on an ein Co₂(CO)₆- (VIIIa, VIIIb) oder an ein (CO)₂Co-Mo($\eta^5-C_5Me_5$)(CO)₂- (IXa, IXb) Fragment gebunden ist. Die Komplexe IX enthalten einen 1-Cobalta-2-Phospha-Heteroallyl Synthesebaustein.

Die Identität der neu dargestellten Verbindungen wird ausser durch analytische und spektroskopische Daten (IR, MS, ¹H-, ¹³C- und ³¹P-NMR) durch eine Röntgenstrukturanalyse von IXb belegt.

Metall-Anion-Verbindungen $[CpM(CO)_3]^-$ (M = Mo, W) [1] reagieren mit Halogenphosphanen R₂PHal (Hal = Cl, Br) zu Metallophosphanen I [2], die sich bei geeigneten Substituenten R unter Decarbonylierung in Phosphenium-Ion-Komplexe II umwandeln [2].

In Verbindungen vom Typ I weist das Phosphoratom eine normale trigonal pyramidale Bindungsform mit freiem Elektronenpaar am Phosphoratom auf. In II dagegen ist das Phosphoratom trigonal planar koordiniert und bildet, wie Malisch und Paine et al. zeigen konnten, eine Metall-Phosphor-Doppelbindung aus [2,3].

Eine andere Darstellungsmöglichkeit für Phosphenium-Ion-Komplexe (Typ II) ist durch 1,2-Eliminierung von HX aus $Cp(CO)_2M(X)(R_2PH)$ (X = Cl, NMe₂; M = Mo, W) III [2c,2d,4], oder durch reduktive Enthalogenierung von Alkinyl-Chlor-

(Ⅲ)

Phosphanen (R)(Cl)P(C=C-Ph) (R = 2,6-^tBu₂-4-MeC₆H₂O), IVa, mit Dicobaltoctacarbonyl V gegeben [5,6].

 $\mathbf{R}' = (\eta^2 - \mathbf{C} \equiv \mathbf{C} - \mathbf{P}\mathbf{h})\mathbf{C}\mathbf{o}_2(\mathbf{C}\mathbf{O})_6$

Wir berichten hier über die Darstellung und Reaktivität von bifunktionalisierten Phosphenium-Ion-Komplexen (Typ II), die eine am Phosphoratom gebundene Phenylethinyl-Gruppe enthalten.

Darstellung von $[(R)(Ph-C\equiv C)]P = MoCp'(CO)_2$, II, $(R = 2,6-{}^{t}Bu_2-4-MeC_6H_2O, 2,4,6-{}^{t}Bu_3C_6H_2O; Cp' = \eta^5-C_5H_5, \eta^5-C_5Me_5)$

Phenylethinylchlorphosphane, IV, die aus RPCl_2 (R = 2,6-^tBu₂-4-MeC₆H₂O, 2,4,6-^tBu₃C₆H₂O) [7] und BrMg-C=C-Ph [8] in THF bei - 80 °C leicht zugänglich sind [5], reagieren mit Cp'(CO)₃Mo⁻ (Cp' = η^5 -C₅H₅, η^5 -C₅Me₅), VII, [1] in THF bei 25 °C zu den Phosphenium-Ion-Komplexen [(R)(Ph-C=C)]P=MoCp'(CO)₂ (R = 2,6-^tBu₂-4-MeC₆H₂O, Cp' = η^5 -C₅H₅: IIa; R = 2,4,6-^tBu₃C₆H₂O, Cp' = η^5 -C₅H₅: IIc, Cp' = η^5 -C₅Me₅: IId), die nach Filtration durch Kieselgel mit n-Pentan/CH₂Cl₂ (1/1) in guten Ausbeuten (> 70%) analysenrein anfallen.

^a Bezogen auf eingesetztes IV.

Die Verbindungen II sind in n-Pentan mässig, gut dagegen in Toluol oder Methylenchlorid löslich. Sie zeigen die für Phosphenium-Ion-Komplexe und ihre Elementhomologen [2,4,10] charakteristische intensiv-violette Farbe und bilden, wie diese, metallisch glänzende Festkörper, die bei Temperaturen um 120°C (IIa, IIc) bzw. 158°C (IId) (exp. Teil) unter Zersetzung schmelzen. In kristalliner Form sind IIa und IIc bei Raumtemperatur unter Inertgas beständig und können kurzzeitig an Luft gehandhabt werden. IId zeigt dagegen eine erhöhte Stabilität gegenüber Luftsauerstoff; diese Eigenschaft ist sicherlich auf den sterisch abschirmenden Pentamethyl-Cyclopentadienyl-Liganden zurückzuführen. Die Verbindungen II ergeben unter EI-Bedingungen gut interpretierbare Massenspektren (exp. Teil). Charakteristisch ist die Simultanabspaltung von zwei Carbonyl-Gruppen aus dem Molekülion M^+ . Die weitere Fragmentierung erfolgt durch Abspaltung von R und R' aus (R)(R')PMoCp'⁺ (R = 2,6-^tBu₂-4-MeC₆H₂O, 2,4,6-^tBu₃C₆H₂O; R' = C=C-Ph).

Die IR-Spektren der Komplexe II lassen jeweils deutlich den Anteil der $Cp'(CO)_2$ Mo-Gruppierung im langwelligen Teil erkennen (exp. Teil). Das Bandenmuster sowie die Schwingungsfrequenzen entsprechen bekannten $Cp(CO)_2$ MoPR₂-Komplexen [2,4]. Die $\nu(C\equiv C)$ -Schwingung des Phenylethinyl-Restes findet man bei 2147 (IIa), 2151 (IIc) bzw. 2145 (IId) cm⁻¹ (exp. Teil), die relativ zu IV ($\nu(C\equiv C)$: 2159 cm⁻¹; exp. Teil) um 12 Wellenzahlen langwellig verschoben ist und auf eine Bindungsaufweitung im Alkinyl hinweist.

Die ¹H-NMR-Spektren der Verbindungen II zeigen eindeutig die 2,6-⁶Bu₂-4-MeC₆H₂O-, 2,4,6-⁶Bu₃C₆H₂O-, Cp'- und Ph-Resonanzen mit den geforderten Intensitätsverhältnissen (exp. Teil), wobei die Cyclopentadienylprotonen ausnahmslos eine schwache Phosphorkopplung (IIa: 1.1; IIc: 0.4; IId: 1.8 Hz) aufweisen.

Die ³¹P-NMR-Signale von IIa-IId sind gegenüber den entsprechenden ³¹P-Resonanzen der freien Liganden (R)(Cl)P(C=C-Ph) (R = 2,6-^tBu₂-4-MeC₆H₂O: IVa; R = 2,4,6-^tBu₃C₆H₂O: IVb) tieffeldverschoben (exp. Teil) und werden bei δ = 224 (IIa, c) bzw. 206 (IId) gefunden, einem Bereich, der typisch für Phosphor-Metall-Mehrfachbindungen ist [2,4].

Die Alkinylkohlenstoff-Atome werden im ¹³C-NMR-Spektrum bei ca. $\delta = 95$ und 105 beobachtet (exp. Teil). Die Carbonylkohlenstoff-Atome der Cp'(CO)₂Mo-Einheit treten bei ca. $\delta = 235$ in Resonanz und zeigen eine ²J(PC)-Kopplung von 23 Hz (exp. Teil). Die restlichen Fragmente werden in dem für sie typischen Bereich mit den dazugehörenden charakteristischen J(CH)-Kopplungen gefunden (exp. Teil).

Reaktion von $[(R)(R')]P=MoCp'(CO)_2$, II, mit $Co_2(CO)_8$, V

Behandelt man bei 25°C eine Toluol/n-Pentan-Lösung von IIa bzw. IIc tropfenweise mit einer äquimolaren Menge an $\text{Co}_2(\text{CO})_8$, V, gelöst in n-Pentan/Toluol (1/1), so werden unter CO-Eliminierung und Farbwechsel von violett nach olivbraun die Komplexe VIIIa und VIIIb nach Chromatographie an Kieselgel und Umkristallisation aus n-Pentan/Toluol analysenrein erhalten.

Verbdg.	R	R'	Ausbeute ^a	
VIIIa	$2,6^{-t}Bu_2-4-MeC_6H_2O$	Н	88	
VIIIb	$2,4,6^{-t}Bu_{3}C_{6}H_{2}O$	н	92	

^a Bezogen auf eingesetztes IIa, IIc.

Die Verbindungen VIII zeigen gegenüber den Verbindungen IIa, IIc eine erhöhte Stabilität und zersetzen sich unter Luftsauerstoff nicht merklich. Ein Grund hierfür ist sicherlich der sterische Anspruch der $(\eta^2-C=C-Ph)Co_2(CO)_6$ -Tetrahedran-Einheit.

VIII löst sich sehr gut in Toluol oder CH_2Cl_2 mit oliv-brauner Farbe. Kristallines VIII zeigt starken Oberflächenglanz und beginnt sich bei 113°C (VIIIa) bzw. 162°C (VIIIb) im Schmelzpunktröhrchen zu zersetzen.

Dass eine η^2 -side-on Koordination des Phenylethinyl-Liganden an ein Co₂(CO)₆-Fragment, unter Ausbildung einer Cobalt-Kohlenstoff-Tetrahedran-Cluster-Einheit (η^2 -C=C-Ph)Co₂(CO)₆ stattgefunden hat, wird durch die fehlende ν (C=C)-Absorptionsbande im IR-Spektrum von VIII belegt (exp. Teil). Gleichfalls werden im IR-Spektrum die für Co₂(CO)₆-Fragmente typischen ν (CO)-Absorptionsmuster [11] im kurzwelligen Bereich, d.h. oberhalb 2000 cm⁻¹ beobachtet; die CO-Streckschwingungen der (η^5 -C₅H₅)(CO)₂Mo-Einheit werden dagegen mit zwei starken Banden bei 1949 und 1885 cm⁻¹ gefunden (exp. Teil).

Das ³¹P-NMR-Spektrum zeigt für VIIIa und VIIIb ein Singulett bei $\delta = 297$ (exp. Teil), das relativ zu IIa, IIc um 73 ppm zu tieferem Feld verschoben ist und auf die η^2 -side-on Koordination des Phenylethinyl-Liganden an ein Co₂(CO)₆-Fragment hindeutet. Analoge Ergebnisse wurden bei der sukzessiven side-on Koordination von R'-C=C-Einheit in R_nP(C=C-R')_{3-n} Verbindungen (n = 0, 1, 2) an Co₂(CO)₆-Fragmente erhalten [5,12].

Im EI-Massenspektrum von VIIIa beobachtet man neben dem Molekülion M^+ die durch sukzessive Abspaltung aller 8 CO-Gruppen gebildeten Fragmentsignale $M^+ - n$ CO (n = 1-8); für VIIIb wird dagegen $M^+ - 4$ CO als Peak mit der höchsten Masse gefunden (exp. Teil).

Lässt man dagegen äquimolare Mengen von IIb bzw. IId und $CO_2(CO)_8$, V, in einem Lösungsmittelgemisch aus Toluol/n-Pentan (1/1) bei 25°C aufeinander einwirken, so können nach chromatographischer Aufarbeitung an Kieselgel die Cluster IXa und IXb als rotbraune kristalline Produkte isoliert werden.

Verbdg.	R	Ausbeute ^a
IXa	$2,6^{-t}Bu_2-4-MeC_6H_2O$	91
IXb	$2,4,6^{-t}Bu_{3}C_{6}H_{2}O$	92

^a Bezogen auf eingesetztes IIb, d.

Dass kein zu VIII analog gebautes λ^4 -Phosphandiyl-Derivat (R)(R')P=Mo(η^5 -C₅Me₅)(CO)₂ (R = 2,6-'Bu₂-4-MeC₆H₂O, 2,4,6-'Bu₃C₆H₂O; R' = (η^2 -C=C-Ph) Co₂(CO)₆) entsteht, kann eindeutig aus den spektroskopisch ermittelten Daten von

IX abgeleitet werden. So werden zwar im IR-Spektrum zwei mittelstarke CO-Streckschwingungs-Banden bei 1949/1885 (IXa) bzw. 1955/1889 (IXb) cm⁻¹ für das Mo(η^5 -C₅Me₅)(CO)₂-Fragment beobachtet, im kürzerwelligen Bereich wird jedoch kein für Co₂(CO)₆-Einheiten typisches Banden-Muster gefunden (exp. Teil).

Im Vergleich zu VIII sind die ³¹P-NMR-Signale der Verbindungen IX zu tieferem Feld verschoben und treten bei $\delta = 367$ (IXa) bzw. 381 (IXb), in einem Bereich, der typisch für μ_3 - und μ_4 -verbrückte Cobalt-Phosphor-Cluster ist [13], in Resonanz.

Die ¹H-NMR-Spektren von IX (exp. Teil) zeigen für die η^5 -C₅Me₅- und Ph-Liganden dieselben Charakteristika wie sie bereits früher für die Verbindungen II und VIII diskutiert worden sind (s.o. und exp. Teil). Für den phosphorständigen Rest R (R = 2,6-^tBu₂-4-MeC₆H₂O, 2,4,6-^tBu₃C₆H₂O) werden jedoch für die orthoständigen t-Butylgruppen jeweils zwei Signale im Verhältnis 1/1, die auf chemisch verschiedene Umgebungen hindeuten, aufgefunden.

Analoge Beobachtungen werden in den ¹³C-NMR-Spektren der Verbindungen IX gemacht (exp. Teil). Die anderen Liganden weisen keine Besonderheiten auf und entsprechen der in den Verbindungen II bzw. VIII getroffenen Zuordnung (exp. Teil).

Nachdem die analytischen und spektroskopischen Daten keinen eindeutigen Strukturvorschlag für IX zuliessen, wurde der Bau der Komplexe IX durch eine Röntgenstrukturanalyse von IXb bestimmt (Tabelle 1; Fig. 1; [14*].

IX unterscheidet sich von den Verbindungen VIII dadurch, dass in IX das $Mo(\eta^5-C_5Me_5)(CO)_2$ -Fragment nicht mehr wie in VIII Teil eines Phosphor-Molybdän-Doppelbindungssytems ist, sondern nunmehr als Baustein im Tetrahedran, { $[\eta^2-C=C-Ph]Mo(\eta^5-C_5Me_5)(CO)_2-Co(CO)_2$ }, (Fig. 1) eingebunden ist.

IX lässt sich als eine aus den beiden Molekülbausteinen $Co(1)(CO)_2/Mo(\eta^5-C_5Me_5)(CO)_2/C(1)$ -Ph und $Co(2)(CO)_3/P(2,4,6^{-t}Bu_3C_6H_2O)/C(2)$ aufgebaute Clusterverbindung beschreiben. Die Zentren Co(2), P und C(2) bilden ein Heteroallyl-System, das gegenüber $Co(1)(CO)_2/Mo(\eta^5-C_5Me_5)(CO)_2/C(1)$ Ph als Drei-Elektronen-Donorligand wirkt (Fig. 2).

Diese Vorstellung wird durch folgende Befunde gestützt:

- (a) Die Abweichung der vier Atome Co(2), P, O(1) und C(2) von einer durch diese Atome gelegten besten Ebene beträgt im Mittel nur 1.15 pm; die Winkelsumme am Phosphoratom beträgt 360.0° (Tab. 1).
- (b) Die Co(2)-P- und P-C(2)-Bindungen sind im Vergleich zu normalen Einfachbindungen verkürzt und deuten auf partiellen Mehrfachbindungscharakter hin. Der Co(2)-P-Abstand liegt mit 206.4 pm (Tab. 1) zwischen den Werten, die für den kürzlich dargestellten λ⁴-Phosphandiyl-Komplex (R)(R')P=Co(CO)₃ (R = 2,6-^tBu₂-4-MeC₆H₂O; R' = (η²-C=C-Ph)Co₂(CO)₆) (Co-P: 201 pm) [5] ermittelt wurden und den "Phosphiniden"-Komplexen [Cp(CO)Co]₂P-R (211 pm) und [(CO)₃Co]₂P-R (Co-Co) (204.7 pm) (R = 2,4,6-^tBu₃C₆H₂) [15]. In μ₂-, μ₃und μ₄-phosphido-verbrückten Cobaltcluster-Verbindungen werden dagegen P-Co-Längen zwischen 212-220 pm [16] gefunden. Der P-C(2)-Bindungsabstand ist mit 171.6 pm (Tab. 1) bedeutend kürzer als eine normale P-C-Einfachbindung und liegt im Bereich der Bindungsabstände von clustergebundenen Phosphaalkenen [13,17].

^{*} Die Literaturnummer mit einem Sternchen deutet eine Bemerkung in der Literaturliste an.

Tabelle 1	
Bindungsabstände (in pm) und	Winkel (in Grad) von IXb ^a

^{<i>a</i>} In Klammern Standardabweichungen der letzten angegebenen Dezimalstelle. ^{<i>b</i>} Cp [*] = η^5 -C ₅ Me ₅ .						
C(2)-Co(1)-C(11)	126.4(9)					
C(2)-Mo-C(14)	118.0(9)					
C(2)-Mo-C(13)	91.6(8)	C(2) - P - O(1)	106.1(8)			
Co(1)-Mo-C(14)	70.9(8)	C(2)-C(1)-C(8)	135(2)			
Co(1) - Mo - C(13)	81.0(7)	C(2) - Co(1) - C(12)	131.5(9)			
Co(1)-Mo-C(1)	46.4(5)	C(1)-Co(2)-C(12)	94(1) 121 5(0)			
Co(1)-C(2)-C(1)	68(1)	C(1)-Co(2)-C(11)	153(1)			
Co(1)-C(1)-C(8)	129(1)	C(1)-Co(1)-C(2)	38.5(7)			
Co(1)-C(1)-C(2)	74(1)	C(1)-Mo-C(14)	94(1)			
Co(1)-P-C(2)	60.9(6)	C(1) - Mo - C(13)	121.3(9)			
Co(1) - P - O(1)	131.3(5)	(1) - Mo - C(2)	50.9(7) 121.2(0)			
Co(1)-P-Co(2)	17.1(2)	$C_0(2) - C_0(1) - C(12)$	93.0(8)			
Co(1) - Co(2) - C(27)	83(2)	$C_0(2) = C_0(1) = C_0(1)$	104.0(8)			
Co(1) - Co(2) - C(26)	95.5(8)	$C_{0}(2) = C_{0}(1) = C_{0}(2)$	80. <i>3</i> (5)			
Co(1) - Co(2) - C(25)	157.6(9)	Co(2) = Co(1) = C(1)	97.1(6)			
r = U(1) = U(30)	122.0(9)	$C_{2} = P - C_{2}$	121.9(7)			
P = C(2) = CO(1)	/ 3.U(/) 100 6(0)	Co(2) = P = O(1)	132.0(5)			
P = Q(2) - Q(1)	122(2)	MO-U(2)-U(1)	/1(1)			
r = CO(2) = C(27)	120(2)	MO-C(2)-P	142(1)			
P = Co(2) = C(26)	114.7(8)	Mo - C(2) - Co(1)	81.4(0) 142(1)			
P = Co(2) = C(25)	100.4(9)	MO-C(1)-C(8)	139(1)			
r = CO(2) = CO(1)	54.9(2) 106.4(0)	$M_{0} = C(1) = C(2)$	/2(1)			
P = Co(1) - Co(12)	137.U(8) 54.0(2)	$M_{0} = C(1) - CO(1)$	03.3(7) 72(1)			
$P = C_{\alpha}(1) = C_{\alpha}(1)$	103.2(7) 137.0(8)	$M_0 = C(1) = C(2)$	22 5(7)			
$P = C_{0}(1) = C_{0}(1)$	105 2(7)	$M_{0} = C_{0}(1) = C_{0}(2)$	136.6(1)			
$P = C_0(1) = C_0(2)$	47.9(1)	$M_0 = C_0(1) = C(2)$ $M_0 = C_0(1) = P(1)$	92 5(2)			
$P_{\alpha}(1) = C(2)$	46 1(5)	$M_0 = C_0(1) = C(2)$	50.0(0)			
$P = C_{\alpha}(1) = C(1)$	77 3(6)	$M_0 - C_0(1) - C(1)$	50.0(6)			
Winkel						
C-C ₁ _{Bu} (C45-C48)	150(4), 158(4), 149(4)					
C-C ₁ Bu(C41-C44)	150(3), 157(3), 154(3)					
$C-C_{Bu}(C37-C40)$	156(3), 153(3), 154(3)					
C-C _{Cp} * ^o (C15-C19)	idealisiert: 142.0(0)					
C(31)-C(37) 163.3(1); C(35)-C(49	5) 158(3); C(33)-C(4	1) 157(2)				
$C-C'_{Ph}(C31-C36)$	idealisiert: 139.5(0)					
$C-C_{Ph}(C3-C8)$	144(4), 134(5), 137(5), 145(4), 142(3), 138(3)					
Mo-C _{Cp*} [*] (C15-C19)	227(2), 235(2), 230(2), 236(2), 241(2)					
$Co(2) - C_{CQ}(C25 - C27)$	177(3), 174(3), 179(6)					
$Co(1) - C_{CO}(C11, C12)$	180(3), 179(3)					
Mo-C _{CO} (C13, C14)	203(2), 193(3)					
Co(1)-C(1)	201(2)	Mo-C(2)	214(2)			
Co(1)-Co(2)	271.1(4)	Mo-C(1)	213(2)			
P-C(2)	171.6(2)	C(1)-C(2)	135.2(3)			
P-O(1)	161(1)	O(1)-C(36)	142(2)			
P-Co(2)	206.4(6)	Co(1)-Mo	275.5(3)			
P-Co(1)	227.7(6)	Co(1)-C(2)	208(2)			
Abstände						

(c) Die Bindungen Co(1)-Co(2), Co(1)-P und Co(1)-C(2) sind dagegen aufgeweitet, wobei die Abstände Co(2)-Co(1) mit 271.1 pm (Tab. 1) und Co(1)-P mit 227.7 pm (Tab. 1) extrem lang sind; übliche Werte für Co-Co-Bindungslängen

Fig. 1. Molekülstruktur von IXb im Kristall.

liegen im Bereich von 240–260 pm [16,18], für Co-P-Abstände werden Werte zwischen 212–220 pm (s.o. und Lit [16]) gefunden. Der interne Vergleich der Co(1)-C(1)- (201 pm, Tab. 1) und Co(1)-C(2)-Bindungsabstände (208 pm, Tab. 1) unterstützt diese Beobachtung (s.o.).

Die anderen experimentell ermittelten Abstände in IXb entsprechen üblichen Werten.

Für die Bildung von IX aus IIb, IId und $Co_2(CO)_8$ sind mehrere Möglichkeiten denkbar. Aufgrund der Tatsache, dass bei der Reaktion von IIa mit $Co_2(CO)_8$ neben VIIIa der Cluster IXc als Nebenprodukt isoliert werden kann (exp. Teil), könnte man erwarten, dass die Komplexe IX über Zwischenstufen vom Typ VIII zugänglich sind. CO-Eliminierung aus den "Intermediaten" VIII könnte im ersten Schritt einen PCoMo-Dreiring ergeben, der dann durch Austausch der isolobalen Fragmente (CO)₃Co und Mo(η^5 -C₅Me₅)(CO)₂ zum thermodynamisch stabileren Produkt IX umlagert. Dieser Mechanismus orientiert sich an dem Konzept von Vahrenkamp et al., nach dem der Austausch isolobaler Fragmente in Clusterverbindungen ein präparativ wertvolles Syntheseprinzip darstellt [19].

Fig. 2. Vereinfachte Darstellung von IXb.

Experimenteller Teil

Alle Arbeiten wurden unter Schutzgas (N_2) in getrockneten und frisch destillierten Lösungsmitteln (n-Pentan: CaH₂; Toluol: Na; THF: Na/Benzophenon; CH₂Cl₂: P₂O₅) durchgeführt. Das zur Chromatographie verwendete Kieselgel (Baker Chemicals, Korngrösse 0.05–0.2 mm) wurde im Hochvakuum von Sauerstoff befreit und unter N₂ aufbewahrt.

IR-Spektren: (Perkin Elmer, Modell 983 G; CaF_2 -Küvetten): vs = sehr stark, s = stark, m = mittel, w = schwach, vw = sehr schwach.

¹H-, ³¹P- und ¹³C-NMR-Spektren: Bruker AC 200; ¹H-NMR: 200.13 MHz, Standard intern durch Lösungsmittel: CDCl₃ 7.24 ppm rel. TMS. ³¹P-{¹H}-NMR: 80.015 MHz, in CDCl₃ bei 298 K, Standard: P(OMe)₃ mit δ (P(OMe)₃) 139 ppm, rel. 85% H₃PO₄. ¹³C-NMR: 50.323 MHz, Standard intern durch Lösungsmittel: CDCl₃ 77.0 ppm. Für alle NMR-Spektren sind die angegebenen Werte der chemischen Verschiebung δ -Werte in ppm (positiv = tieferes Feld, negativ = höheres Feld). Es gelten folgende Abkürzungen: S = Singulett, D = Dublett, Q = Quartett, M = Multiplett.

Massenspektren: Finnigan (Varian) MAT, Modell 8230. CHN-Elementaranalysen: CHN-Analysator der Fa. Carlo Erba. Die Schmelz- bzw. Zersetzungspunkte stellen unkorrigierte Werte dar und wurden auf einem Schmelzpunktsblock der Fa. Gallenkamp bestimmt. $Co_2(CO)_8$ und $Mo(CO)_6$ wurde von Ventron-Alpha, PCl₃ von Merck und die entsprechenden ROH-Verbindung von Fluka bezogen.

(A) Darstellung von RPCl₂ ($R = 2,6^{-t}Bu_2-4-MeC_6H_2O$; 2,4,6^{-t}Bu₃C₆H₂O)

 $RPCl_2$ (R = 2,6-^tBu₂-4-MeC₆H₂O; 2,4,6-^tBu₃C₆H₂O) wurden anlehnend an die Vorschrift von Nifant'ev et al. [7] mit folgenden Details synthetisiert:

500 ml (5.7 mmol) PCl₃ werden in 800 ml Toluol vorgelegt und bei 0°C mit in 200 ml Toluol gelöstem 2,4-Di-t-butyl-4-methyl-phenol (220.36 g, 1.0 mol) bzw. 2,4,6-Tri-t-butyl-phenol (262.44 g, 1.0 mol) und 280 ml (2.0 mol) NEt₃ tropfenweise versetzt. Nach beendeter Reaktionszeit rührt man 24 h bei 25°C und filtriert dann durch Kieselgur von in Toluol unlöslichen Bestandteilen ab; es wird mehrmals mit n-Pentan nachgewaschen. Das gelbgefärbte Eluat wird im Hochvakuum vom Lösungsmittel befreit wobei (2,6-^tBu₂-4-MeC₆H₂O)PCl₂ als zähflüssiges Öl und (2,4,6-^tBu₃C₆H₂O)PCl₂ als gelbliche Festsubstanz anfällt.

 $(2,6-{}^{6}Bu_{2}-4-MeC_{6}H_{2}O)PCl_{2}$ wird destillativ aufgearbeitet und geht bei 120–125°C/0.1 Torr als farbloses, zähflüssiges Öl über, das beim Aufbewahren im Kühlschrank erstarrt. Ausbeute: 250 g (78% bez auf eingesetztes 2,4-Di-t-butyl-4-methyl-phenol).

 $(2,4,6^{-t}Bu_{3}C_{6}H_{2}O)PCl_{2}$ wird in n-Pentan aufgenommen und bei $-20^{\circ}C$ umkristallisiert. Es werden farblose Nadeln vom Festpunkt 84° erhalten. Ausbeute: 265 g (73% bez. auf eingesetztes 2,4,6-Tri-t-butyl-phenol).

Analytische und spektroskopische Daten

 $(2,6-{}^{t}Bu_{2}-4-MeC_{6}H_{2}O)PCl_{2}$ [7]. Gef.: C, 56.29; H, 7.40. C₁₅H₂₃Cl₂OP (321.23) ber.: C, 56.09; H, 7.40%. Schmp.: 46 °C; Siedep.: 120–125 °C (0.1 Torr). ¹H-NMR (CDCl₃): 1.35(S, 18H), 2.20(S, 3H), 6.8(S, 2H). ³¹P{¹H}-NMR (CDCl₃): 200.0 (S, 1P).

(2,4,6-^{*i*}Bu₃C₆H₂O)PCl₂. Gef.: C, 59.70; H, 8.12. C₁₈H₂₉Cl₂OP (363.31) ber.: C, 59.51; H, 8.05%. Schmp.: 84° C. ¹H-NMR (CDCl₃): 1.34(S, 9H); 1.52(S, 18H); 7.35(S, 2H). ³¹P{¹H}-NMR (CDCl₃): 199.8(S, 1P). ¹³C{¹H}-NMR (CDCl₃): 31.5(S, 3C); 32.7(S, 6C); 34.7(S, 1C); 35.9(S, 2C); 124.2(S, 2C); 141.7(S, 2C); 146.0(S, 1C); 146.6(S, 1C). MS (m/e (rel. Int.); m/e-Werte bez. auf ³⁵Cl): M^+ 362(80), M^+ – Me 347(90), M^+ – Cl 327(14), ¹Bu₃C₆H₂OH⁺ 262(38), ¹Bu₂C₆H₂OH⁺ 205(95), ¹Bu⁺ 57(100).

(B) Darstellung von $RP(Cl)(C \equiv C - C_6H_5)$ (R = 2,6-^t Bu_2 -4-MeC₆ H_2O : IVa; R = 2,4,6-^t $Bu_3C_6H_2O$: IVb)

Zu 10 g (31.1 mmol) (2,6-^tBu₂-4-MeC₆H₂O)PCl₂ [7] bzw. 11.3 g (31.1 mmol) (2,4,6-^tBu₃C₆H₂O)PCl₂ in 100 ml n-Pentan werden bei -85° C tropfenweise 6.4 g (31.2 mmol) BrMgC=CPh [8], gelöst in 60 ml THF, zugegeben. Nach Entfernen des Kältebades lässt man bei 20 °C 1 h rühren und entfernt anschliessend alle flüchtigen Bestandteile im Hochvakuum. Aus dem wachsartigen, schwach gelb gefärbten Rückstand wird IV mit insgesamt 300 ml n-Pentan extrahiert. Die gesammelten n-Pentan Phasen werden über Kieselgur (Fritte: 2.5×5 cm) filtriert und das Lösungsmittel im Hochvakuum entfernt. IV wird in Form eines viskosen, farblosen Produktes erhalten und ist spektroskopisch rein. Analytisch reines IVa kann durch Hochvakuumdestillation (165–170 °C, $6 \cdot 10^{-1}$ mbar) erhalten werden *. Ausbeuten: IVa: 11.00 g (91% bez. auf (2,6-^tBu₂-4-MeC₆H₂O)PCl₂); IVb: 12.50 g (94% bez. auf (2,4,6-^tBu₃C₆H₂O)PCl₂).

Spektroskopische und analytische Daten

(2,6-^{*i*}Bu₂-4-MeC₆H₂O)P(Cl)(C=C-Ph), IVa. Gef.: C, 70.88; H, 7.40. C₂₃H₂₈ ClOP (386.91) ber.: C, 71.40; H, 7.30%. Siedep.: 165–170 °C ($6 \cdot 10^{-1}$ mbar). IR (ν (C=C), n-Pentan): 2159 cm⁻¹. ¹H-NMR (CDCl₃): 1.56(S, 18H); 2.33(S, 3H); 7.14(S, 2H); 7.35–7.55(M, 5H). ³¹P{¹H}-NMR (CDCl₃): 139.4(S, 1P). ¹³C{¹H}-NMR (CDCl₃): 21.2(S, 1C); 32.6(S, 6C); 35.6(S, 2C); 88.9(S, 1C); 110.2 (D, 1C, J(PC) 5.8 Hz); 120.8, 127.6, 128.5, 129.4, 130.2, 132.9, 142.7, 149.0 (je S, (12C)).

(2,4,6-^{*i*}Bu₃C₆H₂O)P(Cl)(C=C-Ph), IVb. Gef.: C, 73.14; H, 7.99. C₂₆H₃₄ClOP (428.98) ber.: C, 72.80; H, 7.99%. IR (ν (C=C), n-Pentan): 2159 cm⁻¹. ¹H-NMR (CDCl₃): 1.38(S, 9H); 1.62(S, 18H); 7.14(S, 2H); 7.3-7.6(S, 5H). ³¹P{¹H}-NMR (CDCl₃): 139.0(S, 1P). ¹³C{¹H}-NMR (CDCl₃): 31.6(S, 3C); 32.8(S, 6C); 33.4(S, 1C); 34.7(S, 2C); 89.6(S, 1C); 110.4(S, 1C); 120.9, 124.0, 128.6, 130.3, 132.1, 142.1, 145.9, 149.1 (je S, (12C)).

(C) Darstellung der Komplexe II

1) Synthese von $[(2,6-'Bu_2-4-MeC_6H_2O)(Ph-C\equiv C)]P = Mo(\eta^5-C_5H_5)(CO)_2$ IIa, und $[(2,4,6-'Bu_3C_6H_2O)(Ph-C\equiv C)]P = Mo(\eta^5-C_5H_5)(CO)_2$, IIc

1.0 g (3.7 mmol) Na[$(\eta^5-C_5H_5)Mo(CO)_3$] [1] werden in 80 ml THF bei 25°C gelöst und mit 1.4 g (3.7 mmol) (2,6-^tBu₂-4-MeC₆H₂O)P(Cl)(C=C-C₆H₅) (s.o.) [5] bzw. 1.6 g (3.7 mmol) (2,4,6-^tBu₃C₆H₂O)P(Cl)(C=C-Ph) (s.o.) versetzt. Es wird unter langsamer CO-Entwicklung zunächst ein Farbwechsel nach Orange, dann

^{*} Ausbeuteverluste durch Zersetzung während der Destillation.

nach Rot beobachtet; nach ca. 40 min ist die Reaktionslösung violett. Es wird insgesamt 5 h bei 25°C gerührt, dann werden alle flüchtigen Bestandteile im Hochvakuum entfernt, der feste Rückstand wird in n-Pentan und wenig CH_2Cl_2 aufgenommen und über Kieselgur filtriert. Nach Entfernen der Lösungsmittel im Hochvakuum wird der kristalline, violettfarbige Rückstand aus Toluol/n-Pentan bei -30°C umkristallisiert. IIa und IIc fallen hierbei in Form von dunkelvioletten Kristallen an. Ausbeuten: IIa: 1.50 g (71 %)*; IIc 1.70 g (75%)*.

[(2,6^{-t}Bu₂-4-MeC₆H₂O)(Ph-C=C)]P=Mo(η^{5} -C₅H₅)(CO)₂, IIa. Gef.: C, 63.40; H, 5.90. C₃₀H₃₃MoO₃P (568.51) ber.: C, 63.38; H, 5.85%. Schmp.: 118°C (Zers.). IR (CH₂Cl₂): ν (C=C): 2147w cm⁻¹; ν (CO): 1949vs, 1877s cm⁻¹. ¹H-NMR (CDCl₃): 1.46 (S, 18H); 2.37 (S, 3H); 5.14 (D, 5H, J(PH) 1.1 Hz); 7.12 (S, 2H); 7.3-7.5 (M, 5H). ³¹P{¹H}-NMR (CDCl₃): 224 (S, 1P). ¹³C-NMR (CDCl₃): 21.4 (Q, 1C, J(CH) 128 Hz); 32.9 (Q, 6C, J(CH) 127 Hz); 35.8 (S, 2C); 94.6 (S, 1C); 104.1 (S, 1C); 91.8 (D, 5C, J(CH) 177 Hz); 120.8, 125.6, 127.5, 128.5, 130.1, 132.6, 142.9, 149.1 (je S, (12 C); der Aromaten-Bereich ist ¹H-entkoppelt angegeben); 253.3, (D, 2C, J(PC) 23 Hz). MS (*m/e* (rel. Int.); *m/e*-Werte sind auf ⁹⁸Mo bezogen): *M*⁺ 570(20), *M*⁺ - 2CO 514(11), *M*⁺ - 2CO - ¹Bu 457(26), MoP⁴Bu₂MeC₆H₂O⁺ 348(16), CpMoPC₂MeC₆H₂O⁺ 323(75), CpMoPC₂Ph⁺ 295(64), ¹Bu₂MeC₆H₂OH⁺ 220(8), ¹Bu₂C₆H₂OH⁺ 205(19), P⁴BuC₆H₂O⁺ 178(5), ¹BuMeC₆H₂OH⁺ 163(13), PhC₂P⁺ 132(4), PC₆H₂O⁺ 121(13), MeC₆H₂OH⁺ 106(15), C₆H₂OH⁺ 91(13), ¹Bu⁺ 57(100).

 $[(2,4,6^{-t}Bu_{3}C_{6}H_{2}O)(Ph-C\equiv C)]P=Mo(\eta^{5}-C_{5}H_{5})(CO)_{2}, IIc. Gef.: C, 64.43; H, 6.94. C_{33}H_{39}MoO_{3}P (610.57) ber.: C, 64.92; H, 6.44%. Schmp.: <math>\ge 205^{\circ}C$ (Zers.). IR (n-Pentan): $\nu(C\equiv C)$: 2151w cm⁻¹; $\nu(CO)$: 1962vs, 1900vs cm⁻¹. ¹H-NMR (CDCl_{3}): 1.39(S, 9H); 1.50(S, 18H); 5.12(D, 5H, J(PH) 0.4 Hz); 7.39(S, 2H); 7.2-7.6(M, 5H). ³¹P{¹H}-NMR (CDCl_{3}): 224.3(S, 1P). ¹³C{¹H}-NMR (CDCl_{3}): 31.7(S, 3C); 33.0(S, 6C); 34.8(S, 1C); 36.2(S, 2C); 91.8(S, 5C); 94.7(S, 1C); 104.0(S, 1C); 121.0, 123.9, 128.5, 130.1, 132.7, 142.3, 146.7 148.6 (je S, (12C)); 235.3(D, 2C, J(PC) 23 Hz). MS (m/e (rel. Int.); m/e-Werte sind auf ⁹⁸Mo bezogen): M^{+} 612(1), M^{+} - 2CO 556(1), M^{+} - 2CO ^{-1}Bu 499(1), M^{+} - 3¹Bu - 2CO 385(1), Cp(CO)₂MoPC₂Ph⁺ 351(2), CpMoPC₂Ph⁺ 295(2), ¹Bu₃C₆H₂OH⁺ 262(20), ¹Bu₃C₆H₂OH⁺ - CH₃ 247(100), ¹Bu⁺ 57(72).

2) Synthese von $[(2,4,6^{-t}Bu_{3}C_{6}H_{2}O)(Ph-C\equiv C)P] = Mo(\eta^{5}-C_{5}Me_{5})(CO)_{2}$, IId

Analog zu C 1) wird 1.0 g (3.1 mmol) $\text{Li}(\eta^5 \cdot \text{C}_5\text{Me}_5)\text{Mo}(\text{CO})_3$ [1] mit 1.3 g (3.1 mmol) (2,4,6-^tBu₃C₆H₂O)(Cl)P(C=C-Ph), IVb, (s.o.) umgesetzt. Nach 5 h Rühren bei 25°C wird die intensiv rot-violette Reaktionslösung entsprechend zu C1) aufgearbeitet. Filtration über Kieselgel ergibt mit n-Pentan/CH₂Cl₂ (10/1 – 5/1) ein intensiv rot-violettes Eluat, aus dem, nach Entfernen der Lösungsmittel und Umkristallisation bei – 30°C aus wenig n-Pentan/Toluol, IId in Form rot-violetter Nadeln isoliert werden kann. Ausbeute: 1.86 g (88% bez. auf eingesetztes Li[Mo(η^5 -C₅Me₅)(CO)₃]). Gef.: 67.42; H, 7.19. C₃₈H₄₉MoO₃P (680.73) ber.: C, 67.05; H, 7.26%. Schmp.: 158°C (Zers.). IR (n-Pentan): ν (C=C): 2145w cm⁻¹; ν (CO): 1954s, 1888vs cm⁻¹. ¹H-NMR (CDCl₃): 1.34(S, 9H); 1.55(S, 18H); 2.12(D, 15H, J(PH) 1.8 Hz); 7.0–7.3(M, 5H); 7.33(S, 2H). ³¹P{¹H}-NMR (CDCl₃): 206.0(S, 1P).

^{*} Bezogen auf eingesetztes Na[Mo(η⁵-C₅H₅)(CO)₃].

¹³C{¹H}-NMR (CDCl₃): 11.6(S, 5C); 31.7(S, 3C); 32.1(S, 6C); 34.8(S, 1C); 35.9(S, 2C); 95.1(S, 1C); 104.1(S, 1C); 105.9(S, 5C); 121.3, 122.9, 128.2, 129.5, 131.9, 141.3, 145.6, 152.0 (je S, (12C)); 238.6(D, 2C, J(PC) 20 Hz). MS (m/e (rel. Int.); m/e-Werte sind auf ⁹⁸Mo bezogen): M^+ 682(12), $M^+ - 2CO$ 626(4), $M^+ - 2CO - {}^{1}Bu$ 569(24), $P(C_2Ph)({}^{1}Bu_{3}C_{6}H_{2}O)^{+}$ 393(100), $MoP({}^{1}Bu_{3}C_{6}H_{2}O)^{+}$ 390(64), ${}^{1}Bu_{3}C_{6}H_{2}OH^{+}$ 262(9), ${}^{1}Bu_{3}C_{6}H_{2}OH^{+} - CH_{3}$ 247(32).

(D) Darstellung der Komplex-Verbindungen VIIIa und VIIIb

500 mg (0.9 mmol) IIa bzw. 500 mg (0.8 mmol) IIc werden in 50 ml Toluol gelöst und bei 25°C tropfenweise mit einer äquimolaren $Co_2(CO)_8$ n-Pentan/Toluol-Lösung (IIa: 300 mg, 0.9 mmol; IIc: 280 mg (0.8 mmol) $Co_2(CO)_8$ in 30 ml n-Pentan/Toluol (1/1)) versehen. Es wird CO-Entwicklung und Farbwechsel von violett nach intensiv grün und dann nach oliv-braun beobachtet. Man rührt 2.5 h bei 25°C, entfernt anschliessend alle flüchtigen Bestandteile im Hochvakuum und chromatographiert an Kieselgel (30 × 2.5 cm; -20°C; n-Pentan). Mit n-Pentan/ CH₂Cl₂ (10/1 - 5/1) wird VIIIa bzw. VIIIb als oliv-farbene Zone eluiert. Nach Umkristallisation aus n-Pentan/Toluol bei -20°C fallen die Verbindungen VIIIa und VIIIb in Form metallisch glänzender Nadeln an. Ausbeute: VIIIa: 660 mg (88%) *; VIIIb: 680 mg (93%) *.

Anmerkungen: als Nebenprodukt wird bei der Reaktion von IIa mit $Co_2(CO)_8$ die Verbindung IXc gebildet. Sie kann mit Laufmitteln wie n-Pentan/CH₂Cl₂ (8/1 – 2/1) als oliv-braune Zone eluiert werden. Analoge Aufarbeitung (s.o.) ergibt 100 mg IXc (7%, bez. auf eingesetztes IIa).

Analytische und spektroskopische Daten

 $\{(2,6^{-t}Bu_2-4-MeC_6H_2O)[(\eta^2-C\equiv C-Ph)Co_2(CO)_6]\}P = Mo(\eta^5-C_5H_5)(CO)_2, VIIIa.$ Gef.: C, 50.60; H, 4.02. $C_{36}H_{33}Co_2MoO_9P$ (854.44) ber.: C, 50.61; H, 3.89%. Schmp. 113°C (Zers.). IR (ν (CO), n-Pentan): 2096m, 2093m, 2064vs, 2043s, 2034vs, 1997w, 1979w, 1949m, 1885m cm⁻¹. ¹H-NMR (CDCI_3): 1.36(S, 18H); 2.38(S, 3H); 4.82(S, 5H); 7.15(S, 2H); 7.3-7.7(M, 5H). ³¹P{¹H}-NMR (CDCI_3): 297.3(S, 1P). MS (m/e (rel. Int.); m/e Werte beziehen sich auf ⁹⁸Mo): M^+ 856(8), M^+ -CO 828(10), M^+ -2CO 800(10), M^+ -3CO 772(52), M^+ -4CO 744(30), M^+ -5CO 716(10), M^+ -6CO 688(35), M^+ -7CO 660(65), M^+ -8CO 632(47), M^+ -8CO -Co 573(35), M^+ -8CO -2Co 514(20), $Co_2P({}^{t}Bu_2MeC_6H_2O)(C_2Ph)^+$ 469(10), CpMo-P^tBu_2MeC_6H_2O^+ 413(33), ${}^{t}Bu_2MeC_6H_2OH^+$ 220(23), ${}^{t}Bu_2C_6H_2OH^+$ 205(100), P^tBuC_6H_2O^+ 178(10), ${}^{t}BuMeC_6H_2O^+$ 162(7), $MeC_6H_2O^+$ 105(5), $C_6H_2OH^+$ 91(5), ${}^{t}Bu^+$ 57(15).

{ $(2,4,6-{}^{f}Bu_{3}C_{6}H_{2}O)[(\eta^{2}-C\equiv C-Ph)Co_{2}(CO)_{6}]$ } $P = Mo(\eta^{5}-C_{5}H_{5})(CO)_{2}, VIIIb.$ Gef.: C, 52.15; H, 4.43. C₃₉H₃₉Co₂MoO₉P (896.52) ber.: C, 52.25; H, 4.39%. Schmp.: 162°C (Zers.). IR (ν (CO); n-Pentan): 2100m, 2064vs, 2043m, 2034s, 1949m, 1885m cm⁻¹. ¹H-NMR (CDCl_{3}): 1.40(S, 9H); 1.42(S, 18H); 4.84(S, 5H); 7.3-7.8(M, 5H); 7.42(S, 2H). ³¹P{¹H}-NMR (CDCl_{3}): 297.0(S, 1P). ¹³C{¹H}-NMR (CDCl_{3}): 31.7(S, 3C); 33.5(S, 6C); 34.8(S, 1C); 36.5(S, 2C); 91.5(S, 5C); 97.0(S, 1C); 101.8(S, 1C); 124.4, 128.1, 128.5, 130.2, 137.8, 142.8, 146.9, 149.1 (je S, (12C)); 198.4 (br. S, 6C); 200.0(br. S, 2C). MS (m/e (rel. Int.); m/e-Werte sind auf ⁹⁸Mo

^{*} Bezogen auf eingesetztes IIa bzw. IIc.

bezogen): $M^+ - 4CO$ 786(1), $M^+ - 6CO$ 730(1), $M^+ - 7CO$ 702(1), $M^+ - 8CO$ 674(1), MoPCo₂(CO)₃(C₂Ph)⁺ 432(1), PCo₂(CO)₂(C₂Ph)⁺ 306(1), ^tBu₃C₆H₂OH⁺ 262(20), ^tBu₃C₆H₂OH⁺ - CH₃ 247(100), ^tBu⁺ 57(30).

 $(CO)_{3}Co-(2,6-{}^{t}Bu_{2}-4-MeC_{6}H_{2}O)P[(\eta^{2}-C\equiv C-Ph)Mo(\eta^{3}-C_{5}H_{5})(CO)_{2}-Co(CO)_{2}],$ *IXc.* Gef.: C, 50.32; H, 3.99. C₃₅H₃₃Co₂MoO₈P (826.44) ber.: C, 50.87; H, 4.02%. IR (ν (CO); n-Pentan): 2095m, 2065vs, 2043sh, 2034vs, 1994vw, 1979vw, 1949m, 1885m cm⁻¹. ¹H-NMR (CDCl₃): 1.35(S, 9H); 1.39(S, 9H); 2.31(S, 3H); 5.56(S, 5H); 7.11(S, 2H); 7.3-7.7(M, 5H). ³¹P{¹H}-NMR (CDCl₃): 367.0 (S, 1P).

(E) Darstellung der Cluster-Verbindungen IXa und IXb

500 mg (0.78 mmol) IIb bzw. 500 mg (0.73 mmol) IId werden mit äquimolaren Mengen $Co_2(CO)_8$ (IIb: 270 mg (0.79 mmol) $Co_2(CO)_8$; IId: 255 mg (0.74 mmol) $Co_2(CO)_8$) entsprechend zu D) zur Reaktion gebracht. Nach 2.5 h Rühren bei 25°C wird analog zu D) aufgearbeitet. Die Verbindungen IX werden durch Chromatographie (Säulendimension: 25 × 2.5 cm; -20°C; n-Pentan) an Kieselgel (Laufmittel: n-Pentan/Toluol (10/1 - 5/1)) gereinigt. Umkristallisation aus n-Pentan/Toluol bei - 30°C ergibt IXa bzw. IXb in Form metallisch glänzender Kristalle. Ausbeute: IXa: 635 mg (91%) *; IXb: 630 mg (92%) *.

 $(CO)_{3}C_{0-(2,6^{-1}Bu_{2}-4-MeC_{6}H_{2}O)}P[(\eta^{2}-C\equiv C-Ph)Mo(\eta^{3}-C_{5}Me_{5})(CO)_{2}-Co(CO)_{2}],$ *IXa.* Gef.: C, 53.68; H, 4.94, C₄₀H₄₃Co₂MoO₈P (896.56) ber.: C, 53.59; H, 4.84%. Schmp.: 192°C (Zers.). IR (ν (CO); in n-Pentan): 2055vs, 2017vs, 2003s, 1977vw, 1955m, 1889m cm⁻¹; (in CH₂Cl₂): 2049vs, 2011vs, 1992br.-vs, 1975sh, 1907m cm⁻¹. ¹H-NMR (CDCl₃): 1.50(S, 9H); 1.71(S, 9H); 1.84(S, 15H); 2.33(S, 3H); 7.1-7.4(M, 7H). ³¹P{¹H}-NMR (CDCl₃): 381.0 (S, 1P). ¹³C{¹H}-NMR (CDCl₃): 10.7(S, 5C); 21.1(S, 1C); 32.6(S, 3C); 33.3(S, 3C); 35.4(S, 1C); 35.8(S, 1C); 79.1(D, 1C, J(PC) 32 Hz); 93.6(D, 1C, J(PC) 9 Hz); 104.5(S, 5C); 126.8, 128.0, 130.0, 131.9, 133.9, 136.8, 141.9, 149.3(je S, (12C)); 205.6(M, 5C); 227.5(S, 1C); 233.2(S, 1C).

 $(CO)_{3}C_{0-(2,4,6^{-1}Bu_{3}C_{6}H_{2}O)}\overline{P[(\eta^{2}-C\equiv C-Ph)Mo(\eta^{5}-C_{5}Me_{5})(CO)_{2}-Co(CO)_{2}]}, IXb.$ Gef.: C, 55.35; H, 5.61. $C_{43}H_{49}Co_{2}MoO_{8}P$ (938.65) ber.: C, 55.02; H, 5.26%. Schmp.: 145–147 °C (Zers.). IR (ν (CO); n-Pentan): 2055vs, 2017vs, 2003s, 1976m, 1942w, 1910w cm⁻¹. ¹H-NMR (CDCl_{3}): 1.33(S, 9H); 1.53(S, 9H); 1.75(S, 9H); 1.86(S, 15H); 7.2–7.5(M, 7H). ³¹P{¹H}-NMR (CDCl_{3}): 380.6(S, 1P). ¹³C-NMR (CDCl_{3}): 10.6(Q, J(CH) 128 Hz, 5C); 31.4(Q, J(CH) 125 Hz, 3C); 32.7(Q, J(CH) 129 Hz, 3C); 33.4(Q, J(CH) 125 Hz, 3C); 34.6(S, 1C); 35.6(S, 1C); 36.1(S, 1C); 79.1(D, J(PC) 32 Hz, 1C); 93.7(D, J(PC) 9 Hz, 1C); 104.5(S, 5C); 123.6(D, J(CH) 155 Hz, 1C); 124.3(D, J(CH) 155 Hz, 1C); 128.0(D, J(CH) 160 Hz, 2C); 130.0(D, J(CH) 160 Hz, 1C); 132.0(D, J(CH) 160Hz, 2C); 136.8(S, 1C); 233.1(S, 1C); 142.4(S, 1C); 146.8(S, 1C); 148.8(S, 1C); 203.2(M, 5C); 227.5(S, 1C); 233.1(S, 1C). MS (FD): M^{+} - CO 912.

Dank

Herrn Prof. G. Huttner und der Deutschen Forschungsgemeinschaft sind wir für die finanzielle Unterstützung dieser Arbeit zu Dank verpflichtet. Herrn Dr. J.W. Smith danken wir für zahlreiche Diskussionen, den Damen K. Rumpf und E. Weiss

³⁶¹

^{*} Bezogen auf eingesetztes IIb oder IId.

sowie Herrn E. Müller danken wir für die Durchführung der Mikroanalysen. Frau S. Martin sind wir für die tatkräftige präparative Mitarbeit, Frau S. Fiedler und Herrn S. Pitter für die Aufnahme der Massenspektren und Frau M. Scholz für die Anfertigung der Zeichnungen dankbar.

Literatur

- (a) T.S. Piper und G. Wilkinson, J. Inorg. Nucl. Chem., 3 (1956) 104. (b) R.B. King und M.B. Bisnette, J. Organomet. Chem., 8 (1967) 287. (c) W.P. Fehlhammer, W.A. Herrmann und K. Öfele in G. Brauer (Ed.), Handbuch der Präparativen Anorganischen Chemie, Bd. III, Ferdinand Enke Verlag, Stuttgart, 1981, p. 1969.
- 2 (a) E. Gross, K. Jörg, K. Fiederling, A. Göttlein, W. Malisch und R. Boese, Angew. Chem., 96 (1984) 705; Angew. Chem. Int. Ed. Engl., 23 (1984) 738. (b) D. Gudat, E. Niecke, W. Malisch, U. Hofmockel, S. Quashie, A.H. Cowley, A.M. Arif, B. Krebs und M. Dartmann; J. Chem. Soc., Chem. Commun., (1985) 1687. (c) W. Malisch, K. Jörg, E. Gross, M. Schmeusser und A. Meyer, Phosph. Sulfur, 26 (1986) 25. (d) W. Malisch, K. Jörg, U. Hofmockel, M. Schmeusser, R. Schemm und W.S. Sheldrick, ibid., 30 (1987) 205. (e) L.D. Hutchins, R.T.Paine und C.F. Campana, J. Am. Chem. Soc., 102 (1980) 4521. (f) L.D. Hutchins, R.W. Light und R.T. Paine, Inorg. Chem., 21 (1982) 266. (g) D.A. Dubois, E.N. Duesler und R.T. Paine, Organometallics, 2 (1983) 1903. (h) R.T. Paine, L.D. Hutchins, D.A. Dubois und E.N. Duesler, Phosph. Sulfur, 18 (1983) 263. (i) L.D. Hutchins, E.N. Duesler und R.T. Paine, Organomet. Chem., 335 (1987) 229; R.T. Paine, W.F. McNamara, J.Fr. Janik und E.N. Duesler, Phosph. Sulfur, 30 (1987) 241.
- 3 (a) B.E.R. Schilling, R. Hoffmann und J.W. Faller, J. Am. Chem. Soc., 101 (1979) 592. (b) L.D. Hutchins, R.T. Paine und C.F. Campana, ibid., 102 (1980) 4521.
- 4 K. Jörg, W. Malisch, W. Reich, A. Meyer und U. Schubert, Angew. Chem., 98 (1986) 103, Angew. Chem. Int. Ed. Engl., 25 (1986) 92.
- 5 H. Lang und O. Orama, J. Organomet. Chem., 371 (1989) C48.
- 6 H. Lang und M. Leise, unveröffentlicht.
- 7 E.E. Nifant'ev, D.A. Predvoditelev, A.P. Tuseev, M.K. Gracher und M.A. Zolotov, Zh. Obshch. Khim., 50 (1980) 1702.
- 8 (a) V. Jäger in Houben-Weyl (Ed.), Methoden der Organischen Chemie, Georg-Thieme Verlag Stuttgart, Bd. 5/2a, (1977) 380. (b) Ch. S. Kraihanzel und M.L. Losee, J. Organomet. Chem., 10 (1967) 427.
- 9 H. Lang, M. Leise und L. Zsolnai, J. Organomet. Chem., JOM 20752.
- 10 (a) M. Luksza, S. Himmel und W. Malisch, Angew. Chem., 95 (1983) 418, Angew. Chem. Int. Ed. Engl., 22 (1983) 416. (b) K.A. Mahmond, A.J. Rest, M. Luksza, K. Jörg und W. Malisch, Organometallics, 3 (1984) 501.
- 11 z.B. (a) A. Vizi-Orosz, V. Galamb, G. Palyi und L. Marko, J. Organomet. Chem., 216 (1981) 105. (b) H.A. Patel, A.J. Carty und N.K. Hota, ibid., 50 (1973) 247.
- 12 H. Lang und L. Zsolnai, Chem. Ber., eingereicht.
- 13 G. Huttner und K. Knoll, Angew. Chem., 99 (1987) 765, Angew. Chem. Int. Ed. Engl., 26 (1987) 743 und dort zit. Lit.
- 14 Röntgenstrukturanalyse von IXb: Einkristalle (Dimension des vermessenen Kristalls (mm): $0.2 \times 0.2 \times 0.1$) wurden durch Abkühlen einer Toluol/n-Pentan-Lösung von IXb auf -20° C erhalten. IXb kristallisiert in der orthorhombischen Raumgruppe P_{ccn} mit den Gitterkonstanten a 1994.6(7), b 1948.7(6), c 2396.1(7) pm, V 9313(1)×10⁶ pm³; Z = 8. Mit einem automatischen Vierkreisdiffraktometer R3 der Fa. Nicolet (Siemens) wurden bei 293 K im Bereich $2.0^{\circ} \le 2\theta \le 40^{\circ}$ 3047 Reflexe, $I \ge 2\sigma(I)$ gemessen (μ (Mo- K_{α}) 4.4 cm⁻¹; Graphitmonochromator, λ 71.069 pm; ω -scan mit $2.1 \le \omega \le 29.3 \text{ min}^{-1}$ und $\Delta \omega$ 0.75°). Die Lösung und Verfeinerung mit dem Programmsystem SHELXTL-PLUS [20] führte auf der Basis von 3047 unabhängigen Reflexen ($I \ge 2\sigma(I)$) zu R = 0.083 und $R_w = 0.075$; verfeinerte Parameter: 416.

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 54173, der Autorennamen und des Zeitschriftenzitats angefordert werden.

- 15 (a) A.M. Arif, A.H. Cowley, M. Pakulski, M.A. Pearsall, W. Clegg, N.C. Norman und A.G. Orpen, J. Chem. Soc., Dalton Trans., (1988) 2713. (b) A.M. Arif, A.H. Cowley und M. Pakulski, J. Chem. Soc., Chem. Commun., (1985) 1707. (c) A.M. Arif, A.H. Cowley, N.C. Norman, A.G. Orpen und M. Pakulski, ibid., (1985) 1267.
- 16 z.B. (a) H. Lang, G. Huttner, B. Sigwarth, J. Jibril, L. Zsolnai und O. Orama, J. Organomet. Chem., 304 (1986) 137. (b) E. Keller und H. Vahrenkamp, Z. Naturforsch., B, 33 (1978) 537. (c) R.C. Ryan und L.F. Dahl, J. Am. Chem. Soc., 97 (1975) 6904. (d) I.A. Ibers, J. Organomet. Chem., 14 (1968) 423.
- 17 O.J. Scherer, Angew. Chem., 97 (1985) 905. Angew. Chem. Int. Ed. Engl., 24 (1985) 924 und dort zit. Lit.
- (a) A.B. Anderson, Inorg. Chem., 15 (1976) 2598. (b) R.S. Dickson und P.J. Fraser, Adv. Organomet. Chem., 12 (1974) 323. (c) P.W. Sutton und L.F. Dahl, J. Am. Chem. Soc., 89 (1967) 261.
- 19 z.B. (a) D. Mani und H. Vahrenkamp, Chem. Ber., 119 (1986) 3649 und dort zit. Lit. (b) D. Mani und H. Vahrenkamp, ibid., 119 (1986) 3639.
- 20 G.M. Sheldrick, Universität Göttingen, 1988.